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Abstract

Abstract:

Let A(n, d) (resp. A(n, d, w)) be the maximal cardinality of codes

(resp. constant-weight codes of weight w) of length n and minimum

distance d. We introduce our recent results on A(n, d) and

A(n, d, w). We improve two values of A(n, d) and twenty one values

of A(n, d, w).
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I. Coding Theory
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Coding Theory

Let B = {0, 1} be the set of binary alphabets. In coding theory,

one would like to study the set X = Bn of n-tuples of alphabets.

We can view X from various point of views:

(a) X is a set.

(b) X is an abelian group when we give an abelian group structure

on B.

(c) X is a vector space when we give a field structure on B.

Sometimes we denoted this field by F2 and the n-dimensional

vector space over F2 by Fn
2 .
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Coding Theory-Cont.

(d) Fn
2 is a metric space when it is equipped with the Hamming

metric:

• For x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn
2 , we define

d(x, y) = |{i | xi ̸= yi}|.

Sometimes this metric space is denoted by (Fn
2 , dH).

(e) X is a graph where two vectors x, y ∈ X, x and y are adjacent

iff dH(x, y) = 1. This graph is called the Hamming graph, and

it is a distance regular graph.

(f) X is an association scheme which is called the Hamming

scheme.

(g) X form an affine geometry AG(n, 2) of dimension n over F2.
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What is a code?

Binary code:

• A subset C of Bn is called a (binary) code of length n.

• An element of a code C is called a codeword.

Minimum distance of a code:

• For X = (x1, . . . , xn) and Y = (y1, . . . , yn) in Bn, define

d(X,Y ) = |{i | xi ̸= yi}|.

• Minimum distance of a code C is defined by

min{d(X,Y )|X,Y ∈ C, X ̸= Y }.
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Codes can correct errors

Three basic parameters of a code: length n, cardinality |C|,
minimum distance d. The minimum distance determine the error

capability:

Theorem: A code with minimum distance d can correct up to⌊
d−1
2

⌋
errors.
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A fundamental problem on coding theory

A natural problem:

Given n, find a code of length n having:

• large minimum distance,

• large number of codewords.

Remark: We can’t get both.
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A fundamental problem on coding theory-Cont.

Definition: Given n and d, define

A(n, d) = maximum number of codewords

in any code of length n and

minimum distance ≥ d.
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Elementary properties of A(n, d)

Elementary properties of A(n, d):

(1) A(n, 2d) = A(n− 1, 2d− 1),

(2) A(n, d) ≤ 2A(n− 1, d).

These properties are useful when n or d is small.
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Some upper bounds for A(n, d)

To investigate A(n, d) for larger values of n and d, we need some

theory for upper bounds on A(n, d). The upper bounds which will

be useful in our investigation are:

• Hamming bound

• Johnson bound

• Delsarte’s linear programming bounds

• Schrijver’s semi-definite programming bounds
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Hamming bounds

Theorem (Hamming):

A(n, 2d+ 1) ≤ 2n

1 +
(
n
1

)
+
(
n
2

)
+ · · ·+

(
n
d

) .
Quick reason: The balls of radius d centered at codewords are

mutually disjoint!
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Johnson bound

We need the concept of ‘optimal constant-weight codes’ in

introducing Johnson bound:

Definition: Given n, d, and w, define

A(n, d, w) = maximum number of codewords

in any code of length n and

minimum distance ≥ d such that

each codeword has exactly w ones.

Remark: Codes in the above definition are called constant-weight

codes of length n and weight w.
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Johnson bound-Cont.

Theorem (Johnson):

A(n, 2d+ 1) ≤ 2n

1 +
(
n
1

)
+ · · ·+

(
n
d

)
+

( n
d+1 )−(

2d+1
d )A(n,2d+2,2d+1)

[ n
d+1 ]

.

Quick reason: Hamming bound + careful consideration on

spheres of radius d+ 1 centered at codewords.

Why A(n, 2d+ 2, 2d+ 1) appears in this consideration?
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Elementary properties of A(n, d, w)

Elementary properties of A(n, d, w):

(1) A(n, d, w) = A(n, d+ 1, w), if d is odd,

(2) A(n, d, w) = A(n, d, n− w),

(3) A(n, 2, w) =
(
n
w

)
,

(4) A(n, 2w,w) = ⌊ n
w ⌋,

(5) A(n, d, w) = 1, if 2w < d,

(6) A(n, d, w) ≤ ⌊ n
wA(n− 1, d, w − 1)⌋,

(7) A(n, d, w) ≤ ⌊ n
n−wA(n− 1, d, w)⌋.
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Philosophy involved in Johnson’s result

If we have a ‘good’ upper bound for A(n, d, w), then it would

induce a ‘good’ upper bound for A(n, d). In this point of view, we

need to develop ‘coding theory’ on Y = Bn,w where Bn,w denotes

the set of binary n-vectors of weight w. We first trying to

understand Y from various point of views:

(1) Y is a set.

(2) Y is equipped with a metric, since it is a subset of a metric

space.

(3) Y is a graph which is called the Johnson graph.

(4) Y is an association scheme which is called the Johnson scheme.
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Philosophy involved in Johnson’s result-Cont.

(1) Since Y is a set equipped with a metric, Hamming type

theorem can be developed for A(n, d, w). In this case, the size

of a ball of radius 2r is: 1 +
(
w
1

) (
n−w
1

)
+ · · ·+

(
w
r

) (
n−w
r

)
.

(2) We can also develop Johnson type theorem for A(n, d, w) by

considering Hamming type theorem + careful consideration on

spheres of radius t in Y .

(3) This means that we need to consider a subset of vectors in X

which is at distance r from one point, and at distance t from

another point.
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A general definition for A(n, d), A(n, d, w)

Definition: For a finite (possibly empty) set Λ = {(Xi, di)}i∈I ,

where each Xi is a vector in X and each di is a nonnegative

integer, we define

A(n,Λ, d) = maximum number of codewords

in any binary code of length n

and minimum distance d such that

each codeword is at distance di

from Xi for all i ∈ I.
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A general definition-Cont.

Special case 1: |Λ| = 0 We get the usual definition of A(n, d).

Special case 2: |Λ| = 1 Suppose Λ = {(X1, d1)}. By translation,

we may assume that X1 is the zero vector. Hence,

A(n,Λ, d) = A(n, d, w),

where w = d1.

What will happen if |Λ| = 2?
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Doubly-constant-weight codes

Definition:

T (w1, n1, w2, n2, d) = maximum number of codewords

in any code of length n and

minimum distance ≥ d such that

each codeword has exactly w1 ones

on the first n1 coordinates and exactly

w2 ones on the last n2 coordinates.

Remark: Codes in the above definition of T (w1, n1, w2, n2, d) are

called doubly-constant-weight codes.
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A general definition-Cont.

Special case 3: |Λ| = 2 Let Λ = {(X1, d1), (X2, d2)}. We have the

following proposition.

Proposition: If Λ = {(X1, d1), (X2, d2)}, then

A(n,Λ, d) = T (w1, n1, w2, n2, d),

where n1 = d(X1, X2), n2 = n− n1, w1 = 1
2 (d1 − d2 + n1), and

w2 = 1
2 (d1 + d2 − n1).
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Delsarte’s Linear Programming bounds

Distance distribution:

• Let C be a code (of length n).

• For each i = 0, 1, . . . , n, define

Bi =
1

|C|
· |{(X,Y ) ∈ C2|d(X,Y ) = i}|.

• The set {Bi}ni=0 is called the distance distribution of C.

Important equality:

B0 +B1 + · · ·+Bn = |C|.
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Delsarte’s Theorem

Theorem (Delsarte, 1973): Let C be a code with distance

distribution {Bi}ni=0. Then

n∑
i=0

Pk(n; i)Bi ≥ 0

for each k = 1, 2, . . . , n, where Pk(n;x) is the Krawtchouk

polynomial given by

Pk(n;x) =

n∑
j=0

(−1)j
(
x

j

)(
n− x

k − j

)
.
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Delsarte linear programming (LP) bound

Delsarte LP bound Consider Bi’s as variables. Then

A(n, d) ≤ 1 + max⌊B1 + · · ·+Bn⌋,

where the maximization is taken over all (B1, . . . , Bn) satisfying

the linear constraints of Delsarte’s theorem and satisfying Bi ≥ 0

for i = 1, . . . , n.
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Schrijver SDP bound

Definition (Triple distance distribution):

• Let C be a code.

• For each i, j, t ∈ {0, 1, . . . , n}, define

λt
i,j =

∣∣∣∣∣∣
(X,Y, Z) ∈ C3

∣∣∣∣∣∣ d(X,Y ) = i, d(X,Z) = j,

d(Y, Z) = i+ j − 2t.


∣∣∣∣∣∣

• Define
(

n
a,b,c

)
= n!

a!b!c!(n−a−b−c)! .

• If
(

n
i−t,j−t,t

)
̸= 0, let

xt
i,j =

1

|C|
(

n
i−t,j−t,t

)λt
i,j .

• If
(

n
i−t,j−t,t

)
= 0, let xt

i,j = 0.
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Schrijver SDP bound-Cont.

Remark:

• For each i = 0, 1, . . . , n,

Bi =
(n
i

)
x0
i,0.

• Hence,
n∑

i=0

(n
i

)
x0
i,0 = |C|.

27



'

&

$

%

Schrijver’s result

Theorem (Schrijver, 2005) For k = 0, 1, . . . ,
⌊
n
2

⌋
, the matrices(

n∑
t=0

βt
i,j,kx

t
i,j

)n−k

i,j=k

and (
n∑

t=0

βt
i,j,k(x

0
i+j−2t,0 − xt

i,j)

)n−k

i,j=k

are positive semidefinite, where

βt
i,j,k :=

n∑
u=0

(−1)u−t
(u
t

)(n− 2k

u− k

)(
n− k − u

i− u

)(
n− k − u

j − u

)
.
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Schrijver’s result-Cont.

Idea of the proof (1):

• Let P be the collection of all subsets of {1, 2, . . . , n} (which can

be identified with Fn).

• For i, j, t, let M t
i,j be the P × P matrix with

(M t
i,j)X,Y =

 1 if |X| = i, |Y | = j, |X ∩ Y | = t

0 otherwise
.

• Let

An =


n∑

i,j,t=0

cti,jM
t
i,j | cti,j ∈ C

 .
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Schrijver’s result

Idea of the proof (2):

• An is called the Terwilliger algebra of the Hamming cube

P ≡ Fn.

• There exists a unitary matrix U such that

U∗AnU =




C0 0 · · · 0

0 C1 · · · 0
...

...
. . . 0

0 0 · · · Cm




,

where each Ck runs over all matrices of the form
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
Bk 0 · · · 0

0 Bk · · · 0
...

...
. . . 0

0 0 · · · Bk

 .

• Choosing 2 (suitable) positive semidefinite elements R,R′ of

An, Schrijver get the desired result.
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Schrijver semidefinite programming (SDP) bound

Schrijver SDP bound:

A(n, d) ≤ max
n∑

i=0

(n
i

)
x0
i,0

subject to the matrices in the above Schrijver’s Theorem are

positive semidefinite for each k = 0, 1, . . . , ⌊n
2 ⌋ and subject to the

following conditions on xt
i,j .

• x0
0,0 = 1.

• 0 ≤ xt
i,j ≤ x0

i,0 and x0
i,0 + x0

j,0 ≤ 1 + xt
i,j for all

i, j, t ∈ {0, . . . , n}.

• xt
i,j = xt′

i′,j′ if (i
′, j′, i′ + j′ − 2t′) is a permutation of

(i, j, i+ j − 2t).

• xt
i,j = 0 if {i, j, i+ j − 2t} ∩ {1, . . . , d− 1} ̸= ∅.
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II. Improvements on optimal codes
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Some improvements on LP bound

Theorem (Mounits, Etzion, and Litsyn, 2002) Suppose C is a

code of length n and minimum distance d. Let δ = d/2. Then

• Bi ≤ A(n, d, i) for i = 1, . . . , n,

• Bn−δ +
⌊n
δ

⌋∑
i<δ

Bn−i ≤
⌊n
δ

⌋
,

• Bn−δ−i + [A(n, d, δ + i)−A(n− δ + i, d, δ + i)]Bn−δ+i

+A(n, d, δ + i)
∑
j>i

Bn−δ+j ≤ A(n, d, δ + i)

for each i, 0 < i < δ.
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Key point of improvements of LP bound

In Delsarte LP bound

• We deal with the distance distribution {Bi}ni=0.

• When counting pairs (X,Y ) ∈ C2 such that d(X,Y ) = i, we

can first fix X and count Y (and then take sum over all X).

• This means we count the number of codewords Y at distance i

from a fixed codeword X.

• This explains the appearance of A(n, d, w)’s in the

improvements of LP bound.
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Main result: Improved Schrijver SDP bound

In Schrijver SDP bound

• We deal with the “triple distance distribution” {xt
i,j}.

• When counting triples (X,Y, Z) ∈ C3, we can first fix two

codewords X,Y and then count Z.

• This means we count the number of codewords Z at fixed

distances from X and Y .

• Hence, A(n,Λ, w) would be involved, where Λ has two elements.

• Therefore, T (w1, n1, w2, n2, d) would appear.
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Main result: Improved Schrijver SDP bound-Cont.

Main Theorem: For each i, j, t ∈ {0, . . . , n} with
(

n
i−t,j−t,t

)
̸= 0,

xt
i,j ≤

T (t, i, j − t, n− i, d)(
i
t

) (
n−i
j−t

) x0
i,0.

Quick reason:

• We wish to count

λt
i,j =

∣∣∣∣∣∣
(X,Y, Z) ∈ C3

∣∣∣∣∣∣ d(X,Y ) = i, d(X,Z) = j,

d(Y, Z) = i+ j − 2t.


∣∣∣∣∣∣.

• Double counting!! We first pick (X,Y ) ∈ C2 such that

d(X,Y ) = i. Then the number of Z such that

(X,Y, Z) ∈

(X,Y, Z) ∈ C3

∣∣∣∣∣∣ d(X,Y ) = i, d(X,Z) = j,

d(Y, Z) = i+ j − 2t.

 is
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less that or equal to A(n,Λ, d) where

Λ = {X, j), (Y, i+ j − 2t)}. And this value is

T (t, i, j − t, n− i, d).

• Now summing over all pairs (X,Y ) ∈ C2 such that d(X,Y ) = i.

Corollary: For each j = 0, . . . , n,

x0
0,j ≤

A(n, d, j)(
n
j

) .
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Main result: Improved Schrijver SDP bound-Cont.

Recall the conditions of Schrijver SDP bound

• x0
0,0 = 1.

• 0 ≤ xt
i,j ≤ x0

i,0 and x0
i,0 + x0

j,0 ≤ 1 + xt
i,j for all

i, j, t ∈ {0, . . . , n}.

• xt
i,j = xt′

i′,j′ if (i
′, j′, i′ + j′ − 2t′) is a permutation of

(i, j, i+ j − 2t).

• xt
i,j = 0 if {i, j, i+ j − 2t} ∩ {1, . . . , d− 1} ̸= ∅.

Remark:

• The Theorem improves the condition xt
i,j ≤ x0

i,0 since
T (t,i,j−t,n−i,d)

( i
t )(

n−i
j−t )

is much less than 1 in general.

• The Corollary says that x0
i,0 + x0

j,0 ≤ 1 + xt
i,j for all i, j.
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Main result: Improved Schrijver SDP bound-Cont.

More linear constraints

• Since Bi =
(
n
i

)
x0
i,0 for all i, all linear constraints on Bi’s

(improvements of LP bound) can be used in SDP bound.

• More linear constraints on xt
i,j ’s have been (and are being)

studied (but less hope to make more improvements).
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New upper bounds on A(n, d)
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Result

Improved upper bounds on A(n, d)

known known new improved

lower upper upper Schijver Schrijver

n d bound bound bound bound bound

18 8 64 72 71 71 80

19 8 128 135 131 131 142

20 8 256 256 262 274

25 8 4096 5421 5470 5477

26 8 4096 9275 9649 9697

27 8 8192 17099 17622 17768

27 10 512 1585 1764 1765

25 12 52 55 57 58

26 12 64 96 97 98
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Remark

Final remark:

• We in fact get seven new upper bounds on A(n, d) (for n ≤ 28).

• However, five of them have been improved by D.C. Gijswijt,

H.D. Mittelmann, A. Schrijver, “Semidefinite code bounds

based on quadruple distances”.

• Two new upper bounds are:

A(18, 8) ≤ 71 and A(19, 8) ≤ 131.
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III. Improvements on optimal constant-weight codes
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Progress on upper bounds on A(n, d, w)

In 1977: first tables for n ≤ 24

• MacWilliams and Sloane: book “The Theory of

Error-Correcting codes.”

In 1978: updated tables

• Best, Brouwer, MacWilliams, Odlyzko, and Sloane: paper

“Bounds for binary codes of length less than 25.”

In 1987: more updated tables (n ≤ 27)

• Honkala: his Licentiate thesis “Bounds for binary constant

weight and covering codes.”
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Progress on bounds on A(n, d, w)

In 1990: update tables for n ≤ 28

• Brouwer, Shearer, Sloane, and Smith: paper “A new table of

constant weight codes.”

In 2000: Improved upper bounds

• Agrell, Vardy, and Zeger: paper “Upper bounds for

constant-weight codes.”

In 2005: Using semidefinite programming

• Schrijver: paper “New code upper bounds from the Terwilliger

algebra and semidefinite programming.”
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Our improvements

Main results We give two kind of improvements:

• One intersects the improvement of the Delsarte’s linear

programming bound in the paper “Upper bounds for

constant-weight codes” (in 2000.)

• The other is an improvement of the Schrijver’s semidefinite

programming bound in the paper “New code upper bounds

from the Terwilliger algebra and semidefinite programming” (in

2005.)
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The first improvement

The key point

• In 2000, Agrell, Vardy, and Zeger showed that Bi and Bj (for

suitable i and j) have a linear “relation”. This gives a linear

constraint on Bi and Bj which improves the Delsarte’s LP

bound.

• We show that Bi’s for i ∈ H (with |H| ≥ 2) also have a linear

“relation”. For n ≤ 28, with |H| = 3, new upper bounds on

A(n, d, w) are obtained.

• The improvement comes from the observation that: the

existence of a codeword at distance i from a fixed codeword X

will “effect” not only the number of codewords at distance j

from X (showed by Agrell, Vardy, and Zeger) but also the

number of codewords at distance k from X, etc..
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The first improvement-Cont.

Example

• Consider A(27, 8, 13).

• By the result of Agrell, Vardy, and Zeger,

B22 + 6B24 ≤ 26, B22 + 26B26 ≤ 26, B24 +B26 ≤ 1.

• Our result gives

B22 + 6B24 + 26B26 ≤ 26, B24 +B26 ≤ 1.

• We get A(27, 8, 13) ≤ 11904. This improves the upper bound of

Agrell, Vardy, and Zeger: A(27, 8, 13) ≤ 11991, and the best

upper bound of Schrijver: A(27, 8, 13) ≤ 11981.
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The second improvement

Schrijver’s semidefinite programming (SDP) bound

• Schrijver’s (SDP) bound is based on the “triple distance

distribution” of constant-weight codes.
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The second improvement

“Triple distance distribution” of constant-weight codes

• Let C be an (n, d, w) constant-weight code. Let v = n− w. For

each t, s, i, j, define

yt,si,j =
1

|C|
(

w
i−t,j−t,t

)(
v

i−s,j−s,s

)µt,s
i,j ,

where µt,s
i,j is the number of triples (X,Y, Z) ∈ C3 with

d(X,Y ) = 2i, d(X,Z) = 2j, d(Y, Z) = 2(i+ j − t− s), and

d(X + Y, Z) = w + 2t− 2s.

• Set yt,si,j = 0 if either
(

w
i−t,j−t,t

)
= 0 or

(
v

i−s,j−s,s

)
= 0.
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The second improvement-Cont.

Our improvement

• Schrijver showed that yt,si,j ≤ y0,0i,0 and y0,0i,0 + y0,0j,0 ≤ 1 + yt,si,j for

every t, s, i, j.

• We improve these by showing that

yt,si,j ≤ T (t, i, j − t, w − is, i, j − s, v − i, d)(
i
t

) (
w−i
j−t

) (
i
s

) (
v−i
j−s

) y0,0i,0

for every t, s, i, j, where T (w1, n1, w2, n2, w3, n3, w4, n4, d) can

be defined similarly as A(n, d) (the difference is that each

codeword must have the form

X = (X1, X2, X3, X4) ∈ Fn1 ×Fn2 ×Fn3 ×Fn4

with wt(Xi) = wi for i = 1, . . . , 4.
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The second improvement-Cont.

The key point

• When counting (X,Y, Z) ∈ C3, we fix (X,Y ) first and then

count Z. Then we can see that the improvement (naturally)

comes from the definition of A(n,Λ, d) for a “special” case of

|Λ| = 4.
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New upper bounds on A(n, d, w), d = 6

Tables of new upper bounds on A(n, d, w) For n ≤ 28, there

are 21 new upper bounds on A(n, d, w) which are listed below.

Table 1: New upper bounds for A(n, d, w)

lower upper new upper Schrijver

n d w bound bound bound bound

20 6 8 588 1107 1106 1136
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New upper bounds on A(n, d, w), d = 8
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lower upper new upper Schrijver

n d w bound bound bound bound

22 8 10 616 634 630 634

23 8 9 400 707 703 707

26 8 11 1988 5225 5208 5225

27 8 9 1023 2914 2911 2918

27 8 11 2404 7833 7754 7833

27 8 12 3335 10547 10472 10697

27 8 13 4094 11981 11904 11981

28 8 11 3773 11939 11896 12025

28 8 12 4927 17011 17010 17011

28 8 13 6848 21152 21148 21152
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New upper bounds on A(n, d, w), d = 10
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lower upper new upper Schrijver

n d w bound bound bound bound

23 10 9 45 81 79 82

25 10 11 125 380 379 380

25 10 12 137 434 433 434

26 10 11 168 566 565 566

26 10 12 208 702 691 702

27 10 11 243 882 871 882

27 10 12 351 1201 1191 1201

27 10 13 405 1419 1406 1419

28 10 11 308 1356 1351 1356
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Table 2: New upper bounds for A(n, d, w), d = 12

lower upper new upper Schrijver

n d w bound bound bound bound

25 12 10 28 37 36 37

59



'

&

$

%

Thank you!
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