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Abstract '

Abstract:

Let A(n,d) (resp. A(n,d,w)) be the maximal cardinality of codes
(resp. constant-weight codes of weight w) of length n and minimum
distance d. We introduce our recent results on A(n,d) and

A(n,d,w). We improve two values of A(n,d) and twenty one values
of A(n,d,w).
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I. Coding Theory'




Coding Theory I

Let B = {0, 1} be the set of binary alphabets. In coding theory,
one would like to study the set X = B" of n-tuples of alphabets.
We can view X from various point of views:

(a) X is a set.

(b) X is an abelian group when we give an abelian group structure
on B.

(c) X is a vector space when we give a field structure on B.
Sometimes we denoted this field by Fy and the n-dimensional

vector space over o by F5.
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/ Coding Theory-Cont. I \

(d) FZ is a metric space when it is equipped with the Hamming

metric:

e For x = (x1,...,2,) and y = (y1,...,¥yn) in FY, we define

d(z,y) = [{1| zi # yi}l-
Sometimes this metric space is denoted by (F3, dg).

(e) X is a graph where two vectors x,y € X, x and y are adjacent
iff dgy(x,y) = 1. This graph is called the Hamming graph, and

it is a distance regular graph.

(f) X is an association scheme which is called the Hamming

scheme.

\(g) X form an affine geometry AG(n,2) of dimension n over Fj. /
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What is a code? '

Binary code:
e A subset C of B" is called a (binary) code of length n.
e An element of a code C is called a codeword.

Minimum distance of a code:

e For X = (z1,...,2,) and Y = (y1,...,yn) in B™, define
d(X,Y) = [{i| @i # yi}l-
o Minimum distance of a code C is defined by

min{d(X,Y)| X, Y €eC,X #Y}.
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Codes can correct errors'

Three basic parameters of a code: length n, cardinality |C],
minimum distance d. The minimum distance determine the error
capability:

Theorem: A code with minimum distance d can correct up to

L % J EeITors.
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A fundamental problem on coding theory'

A natural problem:

Given n, find a code of length n having:
e large minimum distance,
e large number of codewords.

Remark: We can’t get both.
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A fundamental problem on coding theory-Cont. I

Definition: Given n and d, define

A(n,d) =

maximum number of codewords
in any code of length n and

minimum distance > d.

~
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Elementary properties of A(n,d)

Elementary properties of A(n,d):
(1) A(n,2d) = A(n—1,2d — 1),
(2) A(n,d) <2A(n—1,d).

These properties are useful when n or d is small.

-
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To investigate A(n,d) for larger values of n and d, we need some

Some upper bounds for A(n,d)

~

theory for upper bounds on A(n,d). The upper bounds which will

be useful in our investigation are:

-

e Hamming bound
e Johnson bound
e Delsarte’s linear programming bounds

e Schrijver’s semi-definite programming bounds
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Hamming bounds I

Theorem (Hamming):

o
L+ (1) +(5) +---+(3)

Quick reason: The balls of radius d centered at codewords are

An,2d+1) <

mutually disjoint!

\_ /
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Johnson bound '

We need the concept of ‘optimal constant-weight codes’ in

introducing Johnson bound:

Definition: Given n,d, and w, define

A(n,d,w) = maximum number of codewords
in any code of length n and
minimum distance > d such that

each codeword has exactly w ones.

Remark: Codes in the above definition are called constant-weight

codes of length n and weight w.
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Johnson bound-Cont. '

Theorem (Johnson):

2n

1+ (”) 44 (Z) + () —(45 1) A(n,2d+2,2d+1)
1

A(n,2d+1) <

[257]

Quick reason: Hamming bound + careful consideration on
spheres of radius d + 1 centered at codewords.
Why A(n,2d 4 2,2d 4+ 1) appears in this consideration?

\_ /
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Elementary properties of A(n,d, w)

Elementary properties of A(n,d,w):

3 An,Z,w):(Z),
5) A(n,d,w) =1, if 2w < d,
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Philosophy involved in Johnson’s result.

If we have a ‘good’ upper bound for A(n,d,w), then it would
induce a ‘good’ upper bound for A(n,d). In this point of view, we
need to develop ‘coding theory’ on Y = B™" where B™" denotes

the set of binary n-vectors of weight w. We first trying to
understand Y from various point of views:

(1) Y is a set.

(2) Y is equipped with a metric, since it is a subset of a metric
space.

(3) Y is a graph which is called the Johnson graph.

(4) Y is an association scheme which is called the Johnson scheme.

\_ /
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Philosophy involved in Johnson’s result-Cont. I

(1) Since Y is a set equipped with a metric, Hamming type
theorem can be developed for A(n,d,w). In this case, the size
of a ball of radius 2r is: 1 + (f‘f) (”Iw) + (w) (”_w).

Tr T

(2) We can also develop Johnson type theorem for A(n,d,w) by
considering Hamming type theorem + careful consideration on

spheres of radius ¢ in Y.

(3) This means that we need to consider a subset of vectors in X
which is at distance r from one point, and at distance ¢ from

another point.

\_ /
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4 N

A general definition for A(n,d), A(n,d,w)

Definition: For a finite (possibly empty) set A = {(X;,d;) }ier,
where each X; is a vector in X and each d; is a nonnegative

integer, we define

A(n,A,d) = maximum number of codewords
in any binary code of length n
and minimum distance d such that
each codeword is at distance d;

from X; for all « € I.
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A general definition-Cont. I

Special case 1: |A| =0 We get the usual definition of A(n,d).

Special case 2: |A| =1 Suppose A = {(X1,d1)}. By translation,
we may assume that X, is the zero vector. Hence,

A(n,A,d) = A(n,d, w),

where w = d;.

What will happen if |A| = 27

-
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Definition:

T(w17n17w27n27d)

-

Doubly-constant-weight codes I

maximum number of codewords

in any code of length n and

minimum distance > d such that

each codeword has exactly w; ones

on the first ny coordinates and exactly

wso ones on the last no coordinates.

Remark: Codes in the above definition of T'(w1,n1, w2, no, d) are

called doubly-constant-weight codes.

/
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A general definition-Cont. I

Special case 3: |A| =2 Let A = {(X1,d1), (X2,d2)}. We have the

following proposition.

Proposition: If A = {(X1,d1),(X2,d2)}, then

A(?’L,A,d) — T(w17n17w27n27d>7

where n,p = d(Xl,XQ), o =N — N1, W1 = %(dl — dg +n1), and
Wy = %(dl + do — nl).

\_ /
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Delsarte’s Linear Programming bounds'

Distance distribution:

e Let C be a code (of length n).

e Foreach:=0,1,...,n, define
1

B; =
C

H(X,Y) € C*ld(X,Y) =i}

e The set {B;}!, is called the distance distribution of C.

Important equality:

By+Bi+---+ B, =|C|.

\_ /
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Delsarte’s Theorem '

Theorem (Delsarte, 1973): Let C be a code with distance
distribution {B;}_,. Then

ZPk(n;i)Bz' >0
i=0

for each k =1,2,...,n, where Py(n;x) is the Krawtchouk

polynomial given by

-
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Delsarte linear programming (LP) bound.

Delsarte LP bound Consider B;’s as variables. Then
A(n,d) <1+max|B +---+ B, ],

where the maximization is taken over all (By,..., B,) satisfying
the linear constraints of Delsarte’s theorem and satistying B; > 0

for:=1,...,n.

-
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/ Schrijver SDP bound'

Definition (Triple distance distribution):
e Let C be a code.
e For each 7,j,t € {0,1,...,n}, define

dX,Y :Z,d X,Z — '7
)\Ej: (X,Y,Z)ECS ( ) ( ) :
: dY,Z)=1i+ 75— 2t.
e Define ( Zc) — a!b!c!(nf!a—b—c)!'

° (z tj— tt)#()’let

1
= A\l

% 1]
] (ime-et)

\_* " (i 0] 0s) =0 letat, =0,
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Schrijver SDP bound-Cont.I

Remark:

e Foreach:=0,1,...,n,

e Hence,
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Schrijver’s result I

Theorem (Schrijver, 2005) For £ =0,1,...

n—k

n
t t
Z Bi i kTi
t=0
and

mn
¢ 0 ¢
E :ﬁi,j,kz(xz’+j—2t,0 — Ly
t=0

are positive semidefinite, where

Bi ik = zn:(_l)u_t (’;L) (212:) (n ;f;u

u=0

-

: L%J, the matrices

1,7=Fk

n—k—u

~

/
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Schrijver’s result-Cont. I

Idea of the proof (1):

e Let P be the collection of all subsets of {1,2,...,n} (which can
be identified with F").

e For i,j,t, let M}, be the P x P matrix with

1 if|X|=4,|V]=4,|XNY]|=t

(M )xy = ,
0 otherwise
o [et
mn
¢ ¢ '
Ap=13 D dMij|ci;eC
i,3,t=0
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Schrijver’s result I

Idea of the proof (2):

-

o A, is called the Terwilliger algebra of the Hamming cube

P =F".

e There exists a unitary matrix U such that

U* AU = <

i

\

[ c, 0
e

Lo o

0 )

0

0
Co |

where each C} runs over all matrices of the form

/

/
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(BkO---O\

0 By -+ 0
o 0
\ 0 0o ... Bk}

e Choosing 2 (suitable) positive semidefinite elements R, R’ of

A,,, Schrijver get the desired result.

-
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/ Schrijver semidefinite programming (SDP) bound' \

Schrijver SDP bound:

A(n,d) < max z”: (7;) Y
i=0

subject to the matrices in the above Schrijver’s Theorem are

positive semidefinite for each k = 0,1,..., %] and subject to the

t

following conditions on z; ;.

i $80:

o 0 <z, <uiy and iy +2),<1+zj, for all
i,j,t €4{0,...,n}.

° I}, = !, o if (@ 5,4" 4 j' — 2t') is a permutation of

(@%Z+J—2ﬂ

\\oxm:ﬂﬁfﬁdj+j—2ﬂﬂ{L”wd—1}#Q //
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II. Improvements on optimal codes'
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/ Some improvements on LP bound. \

Theorem (Mounits, Etzion, and Litsyn, 2002) Suppose C is a
code of length n and minimum distance d. Let § = d/2. Then

e B, < A(n,d,i) fori=1,... n,

TN )

1<o
e B, s i+ [An,d,0+i)—An—90+14,d,0 +1)|Bn_s1;
+A(n,d, 6 +1) Y Bp_st; < A(n,d, 5 + i)

J>1

K for each 7, 0 <7 < 0. /
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Key point of improvements of LP bound'

In Delsarte LP bound

e We deal with the distance distribution {B;} ;.

e When counting pairs (X,Y) € C? such that d(X,Y) =i, we

can first fix X and count Y (and then take sum over all X).

e This means we count the number of codewords Y at distance 2

from a fixed codeword X.

e This explains the appearance of A(n,d,w)’s in the

improvements of LP bound.

\_ /
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Main result: Improved Schrijver SDP bound'

In Schrijver SDP bound

e We deal with the “triple distance distribution” {7 ;}.

e When counting triples (X,Y, Z) € C3, we can first fix two
codewords X, Y and then count Z.

e This means we count the number of codewords Z at fixed
distances from X and Y.

e Hence, A(n, A, w) would be involved, where A has two elements.

e Therefore, T (w1, n1, w2, ns,d) would appear.

\_ /
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/ Main result: Improved Schrijver SDP bound-Cont. I \

Main Theorem: For each i,j,t € {0,...,n} with ( n ) £ 0,

i—t,j—t,t
. T(tij—t,n—id) g

i S ) . Zi0-
v O

X

Quick reason:

e We wish to count
d(X,Y)=14d(X,Z2) =7,

A= 14(X,Y,Z) e’
| dY,Z) =i+ j—2t.

e Double counting!! We first pick (X,Y) € C? such that
d(X,Y) =1i. Then the number of Z such that

A(X,Y) = i,d(X,7) = j
xv.2) el Xy z)ecs| W) =hdX =51

\ dY,Z)=i+j—2t. /
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less that or equal to A(n, A, d) where
A={X,5),(Y,i+j—2t)}. And this value is
T(t,i,j —t,n—i,d).

e Now summing over all pairs (X,Y) € C? such that d(X,Y) = i.

Corollary: For each j =0,...,n,
0 A(na da])

L0 S 7,
(5)
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/ Main result: Improved Schrijver SDP bound-Cont. I \

Recall the conditions of Schrijver SDP bound

o x870 = 1.

o 0 <z}, <uiy and x(y+ ), <1+zj, for all
i,j,t €40,...,n}.

o xtﬂ = :z;;?:,j, if (¢/,7',7" + j/ — 2t') is a permutation of

(Z ]7Z+]_2t)
° xi,j:Oif{i,j,i+j—2t}ﬂ{1,...,d—1};é@.
Remark:

e The Theorem improves the condition z} ; < 3 o since

T(tizf) (i” )Z 4) is much less than 1 in general

Jj—t

Ko The Corollary says that 7, + a:j o <1+, for all 4, 5. /
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Main result: Improved Schrijver SDP bound-Cont. I

More linear constraints

e Since B; = (") xy o for all i, all linear constraints on B;’s

(improvements of LP bound) can be used in SDP bound.
t
,]
studied (but less hope to make more improvements).

e More linear constraints on x? .’s have been (and are being)

\_ /
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New upper bounds on A(n,d)
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I{esult'

Improved upper bounds on A(n,d)

known | known new | improved

lower | upper | upper Schijver | Schrijver
n | d| bound | bound | bound bound bound
18 | 8 64 72 71 71 80
19 | 8 128 135 131 131 142
20 | 8 256 256 262 274
25 | 8 4096 5421 5470 5477
26 | 8 4096 9275 9649 9697
27 | 8 8192 | 17099 17622 17768
27 | 10 512 1585 1764 1765
25 | 12 52 55 57 58
26 | 12 64 96 97 98
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Remark '

Final remark:
e We in fact get seven new upper bounds on A(n,d) (for n < 28).

e However, five of them have been improved by D.C. Gijswijt,
H.D. Mittelmann, A. Schrijver, “Semidefinite code bounds
based on quadruple distances”.

e Two new upper bounds are:

A(18,8) <71 and A(19,8) < 131.

\_ /
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III. Improvements on optimal constant-weight codes'
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Progress on upper bounds on A(n,d,w)

In 1977: first tables for n < 24

e MacWilliams and Sloane: book “The Theory of
Error-Correcting codes.”

In 1978: updated tables

e Best, Brouwer, MacWilliams, Odlyzko, and Sloane: paper
“Bounds for binary codes of length less than 25.”

In 1987: more updated tables (n < 27)

e Honkala: his Licentiate thesis “Bounds for binary constant

-

weight and covering codes.”

~
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Progress on bounds on A(n,d,w)

In 1990: update tables for n < 28

e Brouwer, Shearer, Sloane, and Smith: paper “A new table of

constant weight codes.”
In 2000: Improved upper bounds

e Agrell, Vardy, and Zeger: paper “Upper bounds for

constant-weight codes.”
In 2005: Using semidefinite programming

e Schrijver: paper “New code upper bounds from the Terwilliger

algebra and semidefinite programming.”

\_ /
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Our improvements I

Main results We give two kind of improvements:

e One intersects the improvement of the Delsarte’s linear
programming bound in the paper “Upper bounds for
constant-weight codes” (in 2000.)

e The other is an improvement of the Schrijver’s semidefinite

programming bound in the paper “New code upper bounds

2005.)

-

from the Terwilliger algebra and semidefinite programming” (in

/
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/ The first improvement I \

The key point

e In 2000, Agrell, Vardy, and Zeger showed that B; and B, (for
suitable ¢ and j) have a linear “relation”. This gives a linear

constraint on B; and B; which improves the Delsarte’s LP
bound.

e We show that B;’s for « € H (with |H| > 2) also have a linear
“relation”. For n < 28, with |H| = 3, new upper bounds on
A(n,d,w) are obtained.

e The improvement comes from the observation that: the
existence of a codeword at distance ¢ from a fixed codeword X
will “effect” not only the number of codewords at distance j
from X (showed by Agrell, Vardy, and Zeger) but also the

K number of codewords at distance k from X, etc.. /

48



The first improvement-Cont. I

Example
e Consider A(27,8,13).

e By the result of Agrell, Vardy, and Zeger,

Bos + 6824 <26, DBag+ 2689 <26, DBoy + Bog < 1.

e Qur result gives

Boo + 6B94 + 26B5¢ < 26, Doy + Bog < 1.

e We get A(27,8,13) < 11904. This improves the upper bound of
Agrell, Vardy, and Zeger: A(27,8,13) < 11991, and the best
upper bound of Schrijver: A(27,8,13) < 11981.

\_ /
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The second improvement.

Schrijver’s semidefinite programming (SDP) bound

e Schrijver’s (SDP) bound is based on the “triple distance

distribution” of constant-weight codes.
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The second improvement.

“Triple distance distribution” of constant-weight codes

e Let C be an (n,d,w) constant-weight code. Let v =n — w. For
each t, s, 1, 7, define

t,s 1 t,s
Yij = - » o Hi g
| ’ 1—t,g—1t,t 1—S8,7—S,S

where ,ufj is the number of triples (X,Y, Z) € C? with
d(X,Y)=2i,d(X,Z)=25,dY,Z2)=2(i+j—t—s), and
d(X+Y,7Z)=w-+ 2t — 2s.
t,s . . w L v _
o Set Yi'j = 0 if either (i_t,j_t,t) =0 or ( ) = 0.

1—S8,7—S,S

\_ /
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/ The second improvement-Cont. I \

Our improvement

e < y,?,’(? and y,?”(? + y?,’g <1+ yf; for

e Schrijver showed that y,”;

every t,5,1,7.
e We improve these by showing that
T(t,i,j —t,w—1s,%,7 —s,v—1,d) g9
(z) w—i (z) v—i Yi,0
t 71—t S ]—s
for every t, s, i, j, where T (w1, n1,ws, No, W3, N3, Wq, Ny, d) can

be defined similarly as A(n,d) (the difference is that each
codeword must have the form

t,s
Yi.j <

X = (Xl,XQ,Xg,X4) e F" X F'?x F'ox F

K with wt(X;) =w; fori=1,...,4. /
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The second improvement-Cont. I

The key point
e When counting (X,Y, Z) € C3, we fix (X,Y) first and then

count Z. Then we can see that the improvement (naturally)

comes from the definition of A(n, A, d) for a “special” case of

A| = 4.

-
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New upper bounds on A(n,d,w),d =6

Tables of new upper bounds on A(n,d,w) For n < 28, there

are 21 new upper bounds on A(n,d,w) which are listed below.

Table 1: New upper bounds for A(n,d,w)

lower | upper | new upper | Schrijver

n|d|w/| bound | bound bound bound

201 6| 8 588 1107 1106 1136
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New upper bounds on A(n,d,w),d =8
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lower | upper | new upper | Schrijver

n|d| w | bound | bound bound bound
22 1 8|10 616 634 630 634
23 | 81 9 400 707 703 707
26 | 8 | 11 1988 5225 5208 5225
27 1 81 9 1023 2914 2911 2918
27 | 8 | 11 2404 7833 7754 7833
27 | 8 | 12 3335 | 10547 10472 10697
27 | 8 | 13 4094 | 11981 11904 11981
28 | 8 | 11 3773 | 11939 11896 12025
28 | 8| 12 4927 | 17011 17010 17011
28 | 8 | 13 6848 | 21152 21148 21152
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New upper bounds on A(n,d,w),d = 10
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lower | upper | new upper | Schrijver

n| d| w | bound | bound bound bound
23 10 ] 9 45 81 79 82
25 | 10 | 11 125 380 379 380
25 | 10 | 12 137 434 433 434
26 | 10 | 11 168 566 565 566
26 | 10 | 12 208 702 691 702
27 | 10 | 11 243 882 871 882
27 | 10 | 12 351 1201 1191 1201
27 | 10 | 13 405 1419 1406 1419
28 | 10 | 11 308 1356 1351 1356
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Table 2: New upper bounds for A(n,d,w),d = 12

lower | upper | new upper | Schrijver
n| d| w | bound | bound bound bound
25 | 12 | 10 28 37 36 37
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Thank you!




